Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot

نویسندگان

  • Dorota Kwiatkowska
  • Anne-Lise Routier-Kierzkowska
چکیده

Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L.

A non-destructive replica method and a 3-D reconstruction algorithm are used to analyse the geometry and expansion of the shoot apex surface. Surface expansion in the central zone of the apex is slow and nearly isotropic while surface expansion in the peripheral zone is more intense and more anisotropic. Within the peripheral zone, the expansion rate, expansion anisotropy, and the direction of ...

متن کامل

Partial Production of A Normal Morphological Phenocopy in the Zea Mays L. Mutant, Ramosa-1

ZEA MAYS L. Mutant plants carrying the ramosa-1 (ra-1) gene which effects inflorescence development, were treated with aqueous solutions of several growth substances. Some plants treated with TIBA exhibited tassels with a reduced ra-1 phenotype. Several plants treated with GA produced ears showing little branching. Discussion is centered on evidence which supports the idea that hormone metaboli...

متن کامل

Separation of shoot and floral identity

The aerial parts of Arabidopsis are ultimately derived from the primary shoot apical meristem which is established during embryogenesis (Sussex, 1989; Evans and Barton, 1997). Over the plant life cycle, a series of growth phases reflect the activity of this meristem (Poethig, 1990; Schultz and Haughn, 1993; Ratcliffe et al., 1998). Following germination, the shoot apical meristem generates leaf...

متن کامل

Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, <Emphasis Type="Italic">XTH9</Emphasis>, in inflorescence apices is related to cell elongation in <Emphasis Type="Italic">Arabidopsis thaliana</Emphasis>

Regulation of cell wall structure plays a central role in growth and differentiation in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) that catalyze the cleavage and molecular grafting of xyloglucan chains function in loosening and rearrangement of the cell wall. We have characterized XTH9, a member of the XTH family that was isolated by systematic differential screening for highly e...

متن کامل

The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.

Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009